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Introduction
X-ray Photoelectron Spectroscopy (XPS)

Introduction

� As feature sizes decrease, so does the resist layer thickness.
� XPS is a surface sensitive technique that can follow chemical 

� Film thicknesses of <50 nm will soon become common.

� Ultra-thin films can have very different  properties cf. bulk.

� XPS is a surface sensitive technique that can follow chemical 

changes in the top ~10 nm of polymer films.

� Allows determination of elemental composition.� Ultra-thin films can have very different  properties cf. bulk.

� E.g. the glass transition temperature can either decrease 

or increase depending on the interaction with the substrate. 

� Allows determination of elemental composition.

� In-depth analysis gives information on functional groups.

� In situ irradiation with X-rays is analogous to EUV.or increase depending on the interaction with the substrate. 

� These changes can significantly influence chemical reactions.

� This could be potentially catastrophic for lithography. 

� In situ irradiation with X-rays is analogous to EUV.

� Fig. 4 shows the  changes that occur in 20 nm thick poly(pentene 

sulfone) as a result of irradiation with 700 eV Synchrotron X-rays.2� This could be potentially catastrophic for lithography. 

� For 193 nm irradiation of PMMA, we have shown that the rate of 

change of film thickness and refractive index as a function of dose 

sulfone) as a result of irradiation with 700 eV Synchrotron X-rays.2

� A decrease in SO2 is observed, but also appearance of a 
sulfide based side product was also observed. change of film thickness and refractive index as a function of dose 

differs significantly for thin films (Fig. 1).

Normalised Thickness vs Dose -350k aPMMA Refractive Index vs Dose

sulfide based side product was also observed. 
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Fig 1. Change in (left) thickness and (right) refractive index of thin films 
as a function of  193 nm dose.
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Fig 4. Changes in sulfur based functionality as a function of X-ray dose.  

� Monitoring chemical reactions in thin films can be extremely 
challenging for traditional chemical metrology techniques. 

as a function of  193 nm dose.
Fig 4. Changes in sulfur based functionality as a function of X-ray dose.  

Near Edge X-ray Absorption Fine Structure 
challenging for traditional chemical metrology techniques. 

� Here we report on techniques for monitoring of chemical 

changes in ultra-thin films, using non-CAR resists as examples, 

Near Edge X-ray Absorption Fine Structure 

(NEXAFS) Spectroscopy

� NEXAFS is similar to XPS in its surface sensitivity.
changes in ultra-thin films, using non-CAR resists as examples, 
but the techniques are also equally suited to studying chemically 

amplified resists.

� NEXAFS is similar to XPS in its surface sensitivity.

� Provides direct information on bonding, e.g. distinguishes 

between  σ and π bonding.

Grazing Angle 

between  σ and π bonding.

� Fig. 5 shows O and C K-edge NEXAFS spectra for 20 nm thick
polymer films that are untreated, heat treated and irradiated with 650 Grazing Angle 

Attenuated Total Reflectance (GATR) -FTIR
• Standard infrared (IR) methods:

polymer films that are untreated, heat treated and irradiated with 650 

eV X-rays.  

�Changes  of carbonyl based functional groups can be seen.• Standard infrared (IR) methods:

• Excellent for monitoring chemical changes .

�Changes  of carbonyl based functional groups can be seen.
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• Not sensitive enough for analysis of thin films.

• GATR has a sample geometry (Fig. 2) that results in high 

sensitivity, allowing IR spectra of very thin films to be 
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sensitivity, allowing IR spectra of very thin films to be 

measured (monolayer – 50 nm)

• Fig. 3 shows loss of SO in a 20 nm polysulfone film as a function 
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Figure 5. Transmittance-Temperature plots for 20% SMA, demonstrating 

• Fig. 3 shows loss of SO2 in a 20 nm polysulfone film as a function 
of irradiation with 92 eV photons1.
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Figure 5. Transmittance-Temperature plots for 20% SMA, demonstrating 
an LCST and UCST. (Time measuring heat ramp-2oC.min-1)Photon Energy (eV)
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Fig 5. NEXAFS spectra at the (left) O K-Edge and (right) C K edge, 
showing changes in the carbonyl functionalities as a result of X-ray 

Si Wafer

Polymer <50 nm

Enhanced electric field

showing changes in the carbonyl functionalities as a result of X-ray 
irradiation or heating.Ge IRE

Polymer

IR Beam To detector

<50 nm

Summary/Conclusions
• Three powerful techniques for monitoring chemical changes in -SO

Fig 2. GATR FTIR 
sample 

IR Beam To detector

• Three powerful techniques for monitoring chemical changes in 

thin polymer films (monolayer - 50 nm) have been discussed.
-SO2

configuration and 
beam path. 
Enhanced electric 

• Examples have been given for monitoring chemical changes in 
non-CAR resists, but there is significant scope to understand 

the effect of  reducing film thickness on chemical changes 

field (100x) occurs 
in thin (<50 nm) 
polymer film that is 

the effect of  reducing film thickness on chemical changes 

that occur in chemically amplified resists. 

sandwiched 
between a high 
refractive index (RI) 
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